Pancreatic cancer surgical management

Florence Jeune 1, Romain Coriat 2, Frédéric Prat 2, Bertrand Dousset 3, Jean-Christophe Vaillant 1, Sébastien Gaujoux 3

Received 22 October 2018
Accepted 13 February 2019
Available online:

1. AP-Hôp, Pierre-and-Marie-Curie university, Paris VI, Pitié-Salpêtrière hospital, department of hepatobiliary surgery, pancreatic surgery and liver transplantation, 75651 Paris cedex, France
2. AP-Hôp, Paris V, Paris Descartes faculty of medicine, Cochin hospital, department of gastroenterology and oncology, 75014 Paris, France
3. AP-Hôp, Paris V, Paris Descartes faculty of medicine, Cochin hospital, department of digestive, hepatobiliary and pancreatic surgery, 75014 Paris, France

Correspondence:
Florence Jeune, Pitié-Salpêtrière hospital, department of hepatobiliary surgery and liver transplantation, 47-83, boulevard de l’Hôpital, 75651 Paris cedex, France.
florence.jeune@hotmail.fr

Summary

Pancreatic ductal adenocarcinoma (PDAC) remains a dismal prognosis and surgery is the only chance for cure. However, only few of the patients have localized tumor eligible for curative complete resection. Preoperative management and well-staging of the disease are the cornerstone for appropriate surgery and major issues to define the best therapeutic strategy. This review focuses on the surgical and optimal perioperative management of PDAC and summarizes updates data on the subject.

With 279,000 new diagnoses each year worldwide, pancreatic ductal adenocarcinoma (PDAC) is the 4th leading cause of cancer-related deaths in the western world. With its rapidly increasing incidence, it should become the second cause of cancer mortality after 2030 [1]. Only 10–15% of patients are diagnosed with a localized disease allowing a R0-surgical management. The curative resection of PDAC associated with perioperative systemic therapy is currently the best and only chance for cure for resectable and borderline resectable disease with a 5-year overall up to 25% [2,3]. Surgical and perioperative management has significantly evolved during the last years. Improvement in the management of surgical complications and surgical procedures has led to a very low perioperative mortality in specialized centers, in contrast with nationwide data. Preoperative diagnosis and accurate staging as well as surgical and oncological expertise are crucial issues in the management of patients with PDAC.
Preoperative investigations

Imaging modalities

A high-quality preoperative imaging and assessment is a key point to define the best tailored strategies and selected patients eligible for curative surgery. The 3 challenging steps of the preoperative investigations are the early diagnosis, definition of local resectability and detection of distant metastasis. Multi-detector CT scan (MDCT) with contrast and pancreatic protocol is the best-available first modality imaging for suspicion of PDAC and evaluation of vascular (venous and arterial) invasion and resectability (table 1). The MDCT pancreatic protocol is a triphasic submillimeter section thickness technique without and with enhanced-contrast including pancreatic parenchymal phase (40–50 s) and portal venous phase (65–70 s) [4,5]. The reported sensitivity of MDCT to detect PDAC is 85–97% but decrease to 65–75% for small tumor < 2 cm. The evaluation of vascular resectability should assess the involvement of major arteries: the superior mesenteric artery, hepatic artery and coeliac trunk. Criteria of Venous invasion focus on portal vein, splenic and mesenteric superior vein. MDCT has an accuracy of 85–95% defining resectability [6,7]. However, MDCT can be inaccurate in detecting small liver metastasis or peritoneal lesion. Several studies have demonstrated that MRI with diffusion-weighted imaging increased the sensitivity of detection for liver metastases and could be helpful for characterization of indeterminate liver lesions [8–10]. Results of a French randomized controlled trial have reported that 12% of distant lesion unknown on CT and PET-CT was detected on MRI with diffusion-weighted imaging [11]. Both CT and MR Imaging are equally suited for detecting PDAC and local staging though [12]. MRI with diffusion-weighted imaging is currently recommended in the preoperative evaluation of PDAC [13]. The preoperative assessment of lymph node status remains unsatisfactory whatever the imaging modalities as neither the size or morphology can predict nodes involvement [14–16]. The accuracy of preoperative imaging for small peritoneal implant is also insufficient.

Despite increasing improvement on imaging modalities, the percentage of patients undergoing surgical exploration in a curative intent is up to 15% [17]. One of the explanations might be the time interval between the last MDCT and surgery. Some data suggest that the last MDCT should be at more 4 weeks before any plane surgery to avoid unexpectedly finding such as distant metastases during surgery [18,19]. Early surgery without a comprehensive preoperative assessment did not confer any benefit survival, meaning that preoperative imaging, nutritional evaluation and early referral to specialist pancreatic unit is the more effective strategy [20,21]. Endoscopic ultrasonography (EUS) is the most accurate but invasive preoperative modality to detect pancreatic adenocarcinoma especially for small tumor (< 2 cm) with reported sensitivities and specificities of over 95% in most studies [22,23]. EUS can be associated with fine needle aspiration (FNA) or biopsy for histopathological diagnosis in case of uncertain diagnosis, locally advanced or metastatic disease before initiation of neoadjuvant/induction therapy or high suspicion of pancreatic adenocarcinoma with inconclusive or negative MDCT and MRI [24,25]. EUS can be helpful to evaluate lymph node or vascular involvement but is highly operator-dependent regarding this

<table>
<thead>
<tr>
<th>Resectability criteria</th>
<th>Arterial contact</th>
<th>Venous contact</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resectable</td>
<td>No arterial contact (CA/ SMA/CHA)</td>
<td>No tumor contact with SMV or PV ≤ 180° without vein contour irregularity</td>
</tr>
<tr>
<td>Borderline</td>
<td>Pancreatic head/uncinated process: contact with CHA without extension to the CA or hepatic artery bifurcation allowing R0 resection; contact with SMA ≤ 180°; contact with variant arterial anatomy (right hepatic artery/replaced CHA/…)</td>
<td>Contact with SMV or PV > 180° or ≤ 180° with contour irregularity of the vein or thrombosis allowing safe and complete resection</td>
</tr>
<tr>
<td></td>
<td>Pancreatic body/tail: contact with the CA ≤ 180°; contact with CA > 180° without involvement of the aorta, gastroduodenal artery permitting a modified Appleby procedure (resection of the CA after CHA embolization)</td>
<td></td>
</tr>
<tr>
<td>Unresectable</td>
<td>Head/uncinated process: contact with SMA > 180°; contact with the CA > 180°</td>
<td>Head/uncinated process: unreconstructible SMV/PV due to tumor involvement or occlusion; contact with most proximal draining jejunal branch into SMV</td>
</tr>
<tr>
<td></td>
<td>Body and tail: contact with SMA or CA > 180°; aortic involvement or; distant metastasis</td>
<td>Body and tail: unreconstructible SMV/PV due to tumor involvement or occlusion</td>
</tr>
</tbody>
</table>

CA: coeliac artery; SMA: superior mesenteric artery; CHA: common hepatic artery; SMV: superior mesenteric vein; PV: portal vein; IVC: inferior vena cava.
two points. The adverse effects of EUS-FNA needle biopsy are low in the most recent series including mainly pancreatitis (< 2%), hemorrhage or infection [26]. The potential risk of needle track seeding is not supported by recent analysis of large cohort with no impact on survival [27]. Pathology evidence of malignancy is currently not required for resectable tumor and should not delay curative surgery in case of high suspicion of pancreatic adenocarcinoma on imaging [28].

FDG-PET is a positron-emitting radiotracer technique using the 18F-fluorodeoxyglucose (FDG) highly expressed in cancer cells that can be associated with CT. It may have interest in detection of distant metastasis. FDG-PET can detect 97% of liver metastasis greater than 1 cm but fail to detect half of the lesions ≤ 1 cm [29]. Accuracy of FDG-PET for diagnosis of PDAC and detection of liver and peritoneal metastasis is similar to that of MDCT [30]. The poor spatial resolution of FDG-PET limits its interest for local staging. Numerous false-positive results linked to inflammatory lesions, liver abcess, pancreatitis or diabetes decrease its accuracy. To date, no available high evidence suggests to perform routinely FDG-PET for diagnosis or preoperative staging of PDAC. Non-oncological additional information should be analyzed during the preoperative imaging such as anatomic vascular variations (up to 10% of right hepatic artery) [31,32] or coeliac trunk stenosis related to a median arcuate ligament (up to 5% of patient who undergo pancreactoduodenectomy) that should be release during the surgery [33].

Serum marker
Carbohydrate antigen 19-9 (CA 19-9) is a sialylated Lewis A blood antigen, that is the most common tumor marker used in pancreatic cancer. In symptomatic patient, CA 19-9 has a sensitivity of 79–81% and a specificity of 80–90% but its low predictive positive value limits its utility as a screening biomarker [34,35]. However, many studies have demonstrated the negative prognostic value of increased preoperative CA 19-9 in patients undergoing resection and its correlation to the stage of the disease [36-38]. High Preoperative CA 19-9 has been associated with unresectable tumor discover during staging laparoscopy [39-41]. The optimal cutoff for its prognostic value is still matter of debate but a preoperative CA 19-9 level < 200 UI/mL seems to be associated with a high probability of resectability while a level > 1000 UI/mL is associated with distant metastasis or unresectable locally advanced disease [37,42]. Patients with early postoperative increased CA 19-9 have also a worse survival compared to that patients with normal postoperative CA 19-9 (5-years OS 0% vs. 27%) [42]. Similarly, normalization or decreased CA 19-9 by ≥20–50% following chemotherapy is associated with prolonged survival [42] and control of the disease.

However, CA 19-9 may have insufficient accuracy in asymptomatic patients [43] and has several limitations that should be considered when interpreting serum levels in a clinical setting. First of all, sialylated Lewis antigen-negative patients that have fewer or no secretion of CA19-9 [44] represent approximately 5%-10% of the population. Nonspecific secretion of CA 19-9 has been reported in several non-malignant conditions such as: ovarian cyst, pulmonary disease, rheumatoid arthritis or Hashimoto disease [43,45,46] and the presence of obstructive jaundice increased significantly the serum level of CA 19-9 [47,48]. The serum level is increased in 30–60% of pancreatic patients and could not be recommended as an available screening biomarker in PDAC [49]. Others promising biomarkers are under investigation. Among them circulating DNA seems to be associated with the prognosis and stage of the disease [50,51].

Staging laparoscopy
The goal of staging laparoscopy is to avoid unnecessary laparotomy in patients planned to have surgery with curative intent [52]. Although systematic staging laparoscopy is controversial, it can be useful in patients with resectable tumor at high-risk for disseminated disease with significantly increased CA 19-9 level [39,53]. Diagnostic laparoscopy could detect about 15% of locally unresectable tumor or occult metastasis following preoperative imaging [54]. Contemporary studies have shown a decreased yield of staging laparoscopy related to the high-quality imaging improvement but it still exceeds 10% in PDAC [52,55]. A selected-staging-laparoscopic approach seems to be the more appropriate and is associated with shorter time to chemotherapy and improved overall survival [55]. Some factors associated with the likelihood of occult metastatic disease have been identified: high preoperative CA 19-9 level (> 100–130 UI/mL), size of the tumor, no neoadjuvant therapy and body or tail location of the tumor [52,53]. Consequently, staging laparoscopy could be recommended in case of:
• bulky tumor of the body or tail of the pancreas;
• high level of preoperative CA 19-9 (> 130–400 UI/mL);
• patients with borderline tumor planned to received preoperative therapy [13].

Staging PDAC
A well-staged-tumor is a keystone in the management of patients with PDAC. A low-quality preoperative staging may lead to inappropriate therapeutic strategies in up to 50% of patients [56]. These data emphasize the interest of a centralized management of PDAC including expert radiologist and surgeons. Vascular involvement is the main reason of unresectability for non-metastatic patients and is usually related to the involvement of mesenteric vessels for PDAC of the head of the pancreas. The location pattern is a factor of vascular encasement. Mesenteric vessels involvement has been reported to be significantly increase in case of uncinate adenocarcinoma [57]. The degree of cross-sectional circumferential involvement is used for staging. The radiology report will have to focus on the following vessels: superior mesenteric artery (SMA), common hepatic
artery (CHA), coeliac axis (CA), aorta, superior mesenteric vein (SMV), portal vein (PV), first jejunal vein. Indirect signs of venous involvement such as segmental portal hypertension should be analyzed. Using a set of criteria including vascular contact and distant metastasis, patients are divided into 3 groups: resectable/borderline/unresectable (i.e. locally advanced or metastatic disease) [National comprehensive cancer network (NCCN)] [28].

Resectable stage includes tumors with SMV or PV abutment inferior to 180% but no arterial contact (regarding SMA/CA/CHA/aorta).

Borderline tumor is considered when the SMA abutment is inferior to 180° of the circumference without CA involvement or in case of SMV involvement allowing for safe resection and reconstruction. Borderline tumors have a high likelihood of an incomplete resection (R1) during up-front surgery and should receive preoperative treatment in order to downstage and increase the rate of complete resection [58-61].

New highly effective chemotherapy such as FOLFIRINOX or Gemcitabine-nab-paclitaxel-based regimen can lead to secondary resection in up to 30% of locally advanced (LA) tumor (SMA involvement > 180° of the circumference and/or SMV invasion with no initial technical option [62]) without tumor progression after induction treatment [63-65].

Preoperative care

Biliary drainage

Systematic preoperative biliary drainage has been for a long time a matter of debate. Van der Gaag et al. [66] answered to the question with a large multicenter randomized trial including 202 patients with resectable tumor and obstructive jaundice with preoperative bilirubin level of 40-250 micromol/L. They have reported 46% of complications related to the endoscopic preoperative biliary drainage with plastic stent such as cholangitis (26%), pancreatitis (7%), perforation (2%) or bleeding (2%) while no improvement of surgical outcomes was seen in the biliary drainage patients group [66]. Nevertheless, preoperative relief biliary obstruction in patients with potentially resectable tumor can be necessary in selected patients like those with acute cholangitis, serum bilirubin ≥ 250 or 300 micromol/L [67] or in whom surgery is delayed for neo-adjuvant therapies [68,69]. For these patients, whenever preoperative biliary endoscopic drainage is required, full covered short self-expandable metal stents (FCSEMS) should be used rather than plastic stents as they decreased the rate of complications (51 vs. 74%) [70,71]. The optimal time to surgery should be 4-6 weeks to allow optimal therapeutic benefit with no negative impact on oncological outcomes [72].

Preoperative nutrition

Up to 80% of the patients undergoing pancreatic resection for malignant tumors have a malnutrition deficiency [73]. Many studies have reported a higher rate of postoperative complications in undernourished patients [74,75] such as surgical site infection, hospital acquired infection [76] or pancreatic fistula [77,78]. The nutrition status can be evaluated with the following tools: loss of weight (>5% in the previous month or >10% within the 6 previous months), albumin and prealbumin level (g/L), Body mass index (BMI). Several nutritional scores such as the mini nutritional assessment (MNA) have been evaluated to define the malnutrition risk associated with the postoperative outcomes [79] but none of these scores seems to be more relevant than to another.

Several studies have reported that preoperative immunonutrition (IN) in gastrointestinal cancer was associated with a lower rate of postoperative infections and a shorter length of hospital stays allowing a shorter functional recovery [80,81], even for patients well-nourished [82]. These results have emphasized the interest of preoperative IN for all the patients whatever the nutritional status. A preoperative IN such as Oral Impact™ should be at least delivered for ≥ 7 days before surgery to reach a therapeutic benefit. Patients with severe nutritional risk (weight loss > 10-15% within 6 previous months, BMI < 18.5 kg/m², albumin < 30 g/L) should receive an enteral nutritional support for 10–14 days prior to surgery [83].

Surgery

Surgery is the only chance of cure for PDAC but only 10 to 20% of patients will undergo pancreatic resection [84,85]. A Japanese multicenter RCT has reported a better survival of patients with resectable locally advanced PDAC undergoing surgical resection than that of treated with radio chemotherapy alone [84]. The median survival of patients with surgical resection ranges from 20.1 to 28 months [86,87] with a mortality that has significantly decreased over the last decade, to fall below 5% in high-volume centers [13,88]. The goal of the surgery is to achieve a microscopic complete resection (R0). Major prognostic factors have been well-established such as nodes involvement [89], lymphovascular [90] and perineural invasion [91], tumor size [87] or preoperative level of CA 19-9 [92]. The prognostic impact of R0 resection has been for a while matter of debate as controversial data have been published [93-96]. These conflicting results are highly affected by the definition of R0 resection and the pathology specimen evaluation that are not standardized in most of the studies as highlight the rate of R0 resection ranging from 15% to > 80% [97-99]. Furthermore, several studies have reported that resection status was associated with major prognostic factors such as nodes involvement, which may have more relevant impact than that of resection margin status [89,100]. In a recent prospective French trial, we have reported that R0 resection had a major impact on survival among resected patients without node involvement [101].
Pancreaticoduodenectomy

Technical considerations

The nature and extent of the surgery depend on the location and size of the tumor. Tumors located in the head or uncus of the pancreas require a pancreaticoduodenectomy (PD) that remove the pancreatic head, duodenum, gallbladder and common bile duct with removal of the gastric antrum (Whipple procedure) or not. The pylorus-preserving pancreaticoduodenectomy (PPPD) was introduced to avoid functional postoperative impairment such as dumping syndrome or bile reflux without compromising the lymph node clearance or oncological outcomes [102]. However, PPPD do not improve delayed gastric emptying or overall morbidity [103]. The PPPD is not recommended though for tumors located in the upper part of the head of the pancreas. Three anastomosis are required for reconstruction:

- pancreaticojejunostomy (PJ) or pancreaticogastrostomy (PG);
- hepaticojejunostomy;
- gastrojejunostomy (figure 1).

Lymphadenectomy

Lymph node involvement is one of the most powerful prognostic factor in PDAC. Both the number of LN removed in N0 patients and the LN ratio in N1 patients have prognostic value after surgical resection [104]. Extended lymphadenectomy including circumferential dissection of the SMA and coeliac axis (CA) had been proposed to increased survival after pancreatic resection. Extended lymphadenectomy has been investigated in 5 RCT trials but failed to find better oncological outcomes compared to standard lymphadenectomy and extended lymphadenectomy increase the rate of postoperative morbidity [105-109](diarrhea, delayed gastric emptying...). While definition of extended lymphadenectomy is still unclear, the standard lymphadenectomy should include the following LN stations: 5 (suprapyloric), 6 (infrapyloric), 8a (common hepatic artery), 12 b-c (along the bile duct and cystic duct), 13a-b (along the head of the pancreas), 14a-b (along the right lateral side of superior mesenteric artery), 17a-b (along the anterior face of the head of the pancreas) (figure 2). Retroperitoneal soft-tissue should be removed completely. At least 15 lymph nodes should be harvest to avoid understaging of the tumor disease [104]. Para-aortic lymph node (PALN) dissection is a burden point of the surgical management. PALN involvement is reported in up to 15% [110,111] of patients undergoing PDAC with curative intent. Several studies [110,112] have demonstrated a decreased-overall survival (OS) in patients with PALN metastasis. Based on these data, some surgical teams do not performed PD in case of positive PALN in frozen-section analysis. However, no international consensual guidelines are available regarding the systematic sampling of PALN and the appropriate therapeutic strategy to decide in case of positive PALN.

First SMA approach

The right side of the SMA is the primary location of incomplete microscopic (R1) resection [113] and is associated with a decreased-OS after resection [101]. Usually, circumferential involvement of SMA is a contraindication to surgery. For this reason, SMA first approach has been advocated to assess arterial involvement and define the resectability of the tumor early during the surgical procedure. This approach can avoid unnecessary or R1 resection. Besides, it can allow an easier lymphadenectomy dissection and identification of right hepatic artery [114]. Studies have reported reduction of blood loss [115] and a better access to portal vein if vascular resection is needed [116] with this technique. Six different approaches have been described in the literature. The choice of the best approach depends on the location of the tumor.

Vascular resection

Porto-mesenterical vein involvement is a common clinical finding in PDAC. The rate of venous involvement ranges from 26 to 85% in the literature [117-119]. En bloc venous resection (VR) with reconstruction is a way to achieve complete tumor clearance in case of PV-SMV involvement. Portomesenteric-vein resection is a common procedure at high-volume pancreatic centers. Two meta-analysis including more than 1500 patients have reported similar results in postoperative morbidity and mortality (< 5%) [120,121] in patients with VR compared to those without. Nevertheless, VR have been reported as a negative prognostic factor that decrease OS in several studies [59,98,122]. However, the median OS reported in these studies ranges from 11 to 25 months and is far longer than the median OS observed in these patients when palliative therapies are initiated [122]. In some cohort, patients with VR had more than...
F. Jeune, R. Coriat, F. Prat, B. Douset, J-C Vaillant, S. Gaujoux

To cite this article: Jeune F, et al. Pancreatic cancer surgical management. Presse Med. (2019), https://doi.org/10.1016/j.pmed.2019.02.027

Figure 2

Lymphadenectomy during pancreaticoduodenectomy

Standard lymphadenectomy should include the following lymph node stations: 5 (suprapyloric), 6 (infrapyloric), 8a (common hepatic artery), 12b-c (along the bile duct and cystic duct), 13a-b (along the head of the pancreas), 14a-b (along the right lateral side of superior mesenteric artery), 17a-b (along the anterior face of the head of the pancreas).

67% of node involvement that may also partially explain the worse oncological outcomes among these patients [122]. Patients with venous involvement are good candidates for neoadjuvant therapies. Many studies have reported that FOLFIRINOX-based neoadjuvant chemotherapy increased the rate of R0 resection up to 85% in borderline or locally advanced PDAC and was associated with longer survival [58,60,61].

Arterial resection is contraindicated not recommended as it is associated with substantial morbi-mortality and poor short and long-term outcomes [123,124], even if its remain technically feasible [125].

Pancreatic anastomosis and abdominal drainage

Postoperative pancreatic fistula (POPF) remains the main factor of postoperative morbidity with a rate of about 15-20% in the literature [126,127]. Many studies have focused on different aspect to prevent PF. Two type of pancreatic anastomosis are mainly performed for reconstruction: pancreaticojunostomy (PJ) and pancreaticogastrostomy (PG). Retrospectives studies have advocated that PG was associated with decreased clinical POPF. However, Results from several RCT are conflicting regarding the superiority of PG over PJ and a recent meta-analysis of 1629 patient did not support one procedure to another regarding postoperative morbidity and POPF [128-130]. It appears that one standardized anastomotic technique should be learn and perform within a center to minimize POPF irrespective of the type of anastomosis or texture of the pancreas [131].

Transanastomotic pancreatic stent placement had been proposed to reduce the rate of POPF after pancreatic resection. RCTs have demonstrated that external drainage of pancreatic duct with stent reduced POPF and overall morbidity in high-risk patients with soft pancreas texture and non-dilated duct after PD [51,132,133].

Inhibition of exocrine secretion by somatostatine analogues including octreotide have been evaluated in many trials with controversial results [134,135]. To date, no available data suggest to deliver systematic octreotide for prevention of POPF. A French RCT: Pielips is currently comparing intravenous somatostatine vs. subcutaneous octreotide for prevention of POPF during pancreatectomy.

Abdominal drain is routinely used after pancreatic resection. Selective use of drain and early removal for patients with a low risk of POPF appears to be an appropriate strategy [136-138].

Inking of PD specimen

The heterogeneity of incomplete microscopic resection (R1 resection) rate and its association with oncological outcomes remains a central issue. The reported rate of R1 resection ranges from 15 to > 80% depending on the definition used to defined...
R1 status [98,139]. The Union for International Cancer Control (UICC) define R1 resection as the presence of tumor cells at the surface of the resection margins (0 mm), whereas the UK Royal College of Pathologist define microscopic residual tumor as the presence of tumor cells within 1.0 mm of the margins. The 1 mm cutoff seems to be the more clinically relevant, since it seems to be clearly associated with oncological outcome. The confusion is also maintained as R1 status and microscopic margin involvement are commonly misused to define incomplete resection while the R descriptor stands for residual disease and not for resection margin. The pathology protocol and specimen inking have a major impact on the accurate assessment of incomplete microscopic resection [100,140]. However, recent survey among pathologist demonstrated a significant inconsistency in the assessment of resection margin involvement as only 58% of pathologists inked the pancreatic specimens [141]. A recent prospective study [89] has clearly highlight the clinical relevance of inking PD specimen to report the appropriate rate of R1 resection that may lead to specific adjuvant strategies. Inking of PD specimen is currently mandatory.

Laparotomy or laparoscopy?

PD is associated with high rate of morbidity and some surgeons had advocate that minimally invasive procedure (MIP) could reduce the postoperative morbidity and lead to enhanced recovery. Results of study concerning MIP outcome remain controversial. Preliminary results of the LEOPARD-2 RCT [142] comparing MIP versus open PD for benign, premalignant or malignant disease have been recently published. The data monitoring board stopped the study after 99 inclusions among the 136 scheduled because of an increased mortality in the MIP group (10% vs. 2%). Nevertheless, in high-volume centers, postoperative morbidity of MIP pancreaticoduodenectomy could be comparable of the one of open PD. However, oncological data are currently not available regarding MIP for PD performed for PDAC. To date, it is very important to underline that minimally invasive approach for PD is not the standard of care.

Distal pancreatectomy

Distal pancreatectomy with splenectomy is usually performed for pancreatic adenocarcinoma located in the body or tail of the pancreas. Standard lymphadenectomy during distal pancreatectomy should include at least LN located in the hilum of the spleen (LN station 10), along the splenic artery (LN station 11) and along the inferior border of the body and tail of the pancreas (LN station 18) [143]. Lymph node located around the coeliac axis should be include only in tumors of the body of the pancreas [143] (figure 3). The minimum number of LN removed during DP remains a central issue. By analogy to PD, the general consensus require 15 LN during distal pancreatectomy but because of different lymphatic spread, it may be not appropriate for body/tail tumor of the pancreas [144]. Several studies investigated the minimum number required for appropriate staging after DP. Some of them reported a minimum number of 20 LN.

Figure 3

Lymphadenectomy during pancreatosplenectomy

Standard lymphadenectomy during distal pancreatectomy should include at least: LN located in the hilum of the spleen (LN station 10), along the splenic artery (LN station 11) and along the inferior border of the body and tail of the pancreas (LN station 18). Adapted from Dr. Jacques Taboury (adapted from Dr. Jacques Taboury).
necessary to detect at least 1 positive LN [145,146]. Since the two last decades, the radical antegrade modular pancreatectectomy (RAMPs procedure) advocated by Strasberg et al. [147] have been matter of interest. During this procedure, the dissection is proceeded from the right to the left side to achieve an early vascular control and parenchymal transection at the neck of the pancreas. The anterior renal fascia is removed to achieve a complete retroperitoneal margin. Coeliac and left side of SMA node dissection are associated to the standard lymphadenectomy. This surgical technique has demonstrated oncological benefit such as a greater rate of R0 resection and a higher number of LN retrieved [148-150].

Section of the remnant pancreatic parenchyma
POPF occurs in up to a third of patients after DP. Several techniques have been proposed in an attempt to reduce this rate including hand-sew selective closure of the pancreatic duct, stapler closure, pancreatic anastomosis and stump coverage with glue or patch, but none of them has demonstrated a significant impact [151]. A RCT comparing hand-sew and stapler closure did not report any significant difference in POPF in the two group [152]. Likewise, transpapillary stent in the remnant pancreas to improve the pancreatic fluid drainage did not decrease the rate or severity of POPF [153].

Laparoscopic DP
Feasibility and safety of laparoscopic DP (LDP) have been widely assessed since few years. A trend toward a reduction in blood loss, delayed gastric emptying and a shorter length of hospital stay have been reported with LDP [154,155]. The RCT LEOPARD have reported similar overall postoperative complications with LDP vs. open surgery for benign or malignant left-sided pancreatic tumors with a shorter time to functional recovery (4 days vs. 6 days) [156]. To date, very few data focus on PDAC and oncological outcomes are available, and there are no strong evidence of decreased survival with LDP [157]. The pan-European propensity score matched study DIPLOMA including 1212 patients reported a lower LN retrieval with LDP (14 vs. 22) without impact on median OS (28 months vs. 31 months) [158]. RCT with primary endpoint focus on OS and DFS are needed to confirm the oncological safety of LDP. LDP for PDAC should be performed in expert center in pancreatic surgery for selected patients with small tumor without vascular or visceral involvement.

Postoperative management
Surgical postoperative morbidity is still about 30–40% after pancreatic resection mainly represented by postoperative pancreatic fistula (POPF). The new consensual definition of POPF is a drain output fluid (irrespective of the volume) with an amylase content greater than 3 times the upper limit of the normal serum value [159]. International consensus regarding pancreatic surgery-related complications has allowed available comparison of studies and development in postoperative care. The management of complications remains the cornerstone of surgical success and safety. Percutaneous or endoscopic drainage of POPF or intra-abdominal abscess and endovascular management of postoperative hemorrhage have improved the postoperative management of surgical complications and decreased perioperative mortality [160]. Presence of Interventional radiologist unit is associated with a lower postoperative mortality that makes sense as 44% of the patients will require interventional radiologic procedure including 12% during the perioperative period [161].

Postoperative Hemorrhage commonly related to the gastroduodenal artery stump in patients with POPF is one of the most demanding complications requiring endovascular procedure to avoid re-intervention and high-mortality hospitals. Sentinel bleeding is usually the first symptom before hemorrhage that should lead to early angiography associated with embolization or stent placement. Appropriate management of postoperative outcomes and adequate clinical support are the benchmark of expert unit in pancreatic surgery.

The Enhanced recovery after surgery (ERAS program) including early mobilization, early oral feeding, mid thoracic epidural analgesia and early removal of abdominal drain have reported shorter length of hospital stay and functional recovery and may reduce postoperative complications without adverse effects on postoperative mortality [162,163]. The RCT NutriDPC failed to demonstrate the superiority of nasojejunal early enteral postoperative nutrition (NJEEN) compared with total parenteral nutrition in terms of postoperative infections, length of hospital stay, delay gastric emptying or hemorrhage while NJEEN was associated with a higher rate of postoperative pancreatic fistula [164].

Conclusion
PDAC is still a challenging disease to cure in 2018/2019. Despite major improvement in perioperative management and development of new therapy protocols, its prognosis remains dismal and has poorly evolved over the last 3 decades. Advances in cross-sectional imaging have led to accurate staging of the disease and more appropriate treatment. Multidisciplinary management of PDAC in high and expert centers is mandatory to increase patients’ survival. Well-knowledge of postoperative complications and their adequate management is also the cornerstone of expert pancreatic surgical units. Its decreases postoperative mortality and insures safe surgical procedures. Further studies focus on earlier detection of PDAC are needed to increase the rate of resectable disease at the time of diagnosis and would greatly improve its prognosis.

Disclosure of interest: the authors have not supplied their declaration of competing interest.
References

[40] Kondo N, et al. Prognostic impact of peri-operative serum CA 19-9 levels in patients with...

[56] Walters DM, et al. Pancreas-protocol imaging at a high-volume center leads to improved preoperative staging of pancreatic ductal ade-

[60] Katz MIG, et al. Preoperative modified FOL-

[68] Iacono C, et al. Role of preoperative biliary drainage in jaundiced patients who are candidates for pancreatectoduodenectomy or hepato-

[69] Sun C, Yan G, Li Z, Tzeng C-M. A meta-

[70] Crippa S, et al. Systematic review and meta-

[74] Shinkawa H, et al. Nutritional risk index as an independent predictive factor for the development of surgical site infection after pan-

[76] Kim E, et al. Influence of preoperative nutri-
tional status on clinical outcomes after pan-

[77] Sierzeega M, Niekowiak B, Kuhlj J, Popiela T. Nutritional status affects the rate of pancreatic fistula after distal pancreatectomy: a multi-

surg.2018.05.040.

[81] Silvestri S, et al. Preoperative oral immuno-

[82] Worman A, et al. ESPEN guidelines on ent-
eral nutrition surgery including organ

F. Jeune, R. Coriat, F. Prat, B. Dousset, J-C Vaillant, S. Gaujoux
Pancreatic cancer surgical management

